

TRINITY INSTITUTE OF NDT TECHNOLOGY

#491, 14TH Cross, 4th Phase, Peenya Industrial Area, Bangalore 560 058. INDIA.

Phone: +91-80-41205245, 9141339994 E: training@trinityndt.com W: www.trinityndt.com

ASSIGNMENT – 2 (ULTRASONIC TESTING)

1.	The Ultrasonic Beam gradually spreads out as it propagates into the materials (T/F)
2.	In(near/far/dead) zone the amplitude of an indication from a flaw is
	not related to the size of the flaw.
3.	Larger the size of transducer,(longer/shorter) the near field
4.	Which of the frequencies given here will have shorter Fresnel zone, 1MHz, 4MHz, 6MHz
5.	In a higher velocity material if 'f' and 'D' remain same, Near field(shorter/longer/same)
6.	In the Far Field the Ultrasonic Beam spreads at variable angle. (T/F)
7.	Formula to calculate Beam Divergence =
8.	When using same size transducer, lower the frequency(higher/lower) the beam spread
9.	What is the problem with higher Beam Spread?
10.	Of the transducer sizes here, if other parameters remain same, which transducer has lesser
	beam spread? Dia 10mm, Dia12.5mm, Dia20mm, Dia24mm
11.	If the diameter of probe is same, higher frequency probes will have
	(higher/lesser/same) beam spread.
12.	Higher frequency transducer will have(higher/lower) sensitivity and
	(higher/lower) penetration into the material.
13.	Usually Austenitic Stainless steels are generally tested using frequencies down toMHz.
14.	An imaginary line drawn perpendicular to the interface is called
15.	Angle of Incidence = Angle of(Refraction, Reflection, Normal)
16.	Acoustic Impedance is the products of&of the material.
17.	Formula to calculate Transmitted energy at the interface %TE=(assuming
	Z1 & Z2 are impedances of the two materials)
18.	Longitudinal wave velocity in Steelm/s and Waterm/s.
19.	Snell's Law =
20.	What does it mean by first critical angle?
21.	After the second critical angle, only(longitudinal, shear, surface) wave
	is existing in the second medium
22.	What did you understand about Dead Zone?
23.	The reduction of energy of sound beam as it propagates through the material is called
24.	Finer the grain size of the material more is the grass or hash on the screen. (T/F)
25.	Formula for calculating dB=
26.	If there is an increase of 6dB, the the signal amplitude on the display is increased
	by(50%, 100%, 60%, 200%)
27.	Less Beam Spread means more sensitivity. (T/F)
28.	What are two main reasons for ultrasonic sound beam attenuation in materials?
29.	What is the purpose of couplant in Ultrasonic Testing?
30.	Before First Critical angle(longitudinal, shear, surface, plate) wave/s are
	existing in the second medium.

Ref: TINT/UT/B/0523/00